domingo, 21 de abril de 2019

Los problemas del milenio



Imagina un acertijo matemático tan complejo que se concedieran un millón de doláres a quien lo resolviera.

El Instituto Clay de Matemáticas en Cambridge (Massachusetts, Estados Unidos) ofreció en el año 2000 esta gran suma a aquella persona que pudiera resolver alguno de los siete problemas matemáticos propuestos: los llamados "Problemas del milenio". Tan complejos que hasta entonces nadie había podido solucionarlos.


1-. P frente a NP. Planteado por el científico de la computación Stephen Cook en 1971.

2-. La conjetura de Hodge. Propuesta por el matemático William Vallance Douglas Hodge en los años treinta.

3-. La conjetura de Poincaré. Presentada por Henri Poincaré en 1904. Hasta hoy, el único oficialmente resuelto: el matemático Grigori Perelman encontró la solución en 2006, aunque rechazó cobrar el premio.

4-. La hipótesis de Riemann. Introducida por el matemático Bernhard Riemann en 1859. En 2018, el británico Michael Atiyah afirmó que la había solucionado. Pero antes de ser reconocida, su solución deberá cumplir con los requisitos establecidos por el Instituto Clay: tendría que publicarse en una revista científica de prestigio y dos años después, si el planteamiento fuera aceptado por la comunidad matemática, contar con la aprobación de dos comités de expertos del Instituto.

5-. Yang-Mills y el salto de masa. Iniciado en 1954 por los físicos Chen Ning Yang y Robert Mills.

6-. Las ecuaciones de Navier-Stokes. Originado en las ecuaciones escritas en el S.XIX por Claude-Louis Navier (físico e ingeniero) y George Gabriel Stokes (físico y matemático).

7-. La conjetura de Birch y Swinnerton-Dyer. Planteada por los matemáticos Bryan John Birch y Peter Swinnerton-Dyer a principios de los años sesenta.

En el nombre de cada uno de los problemas tenéis un enlace a una explicación en la página web del Instituto Clay. Aunque se encuentran en inglés, estas explicaciones son claras y amenas.

No hay comentarios:

Publicar un comentario